If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3m^2+5m-22=0
a = 3; b = 5; c = -22;
Δ = b2-4ac
Δ = 52-4·3·(-22)
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-17}{2*3}=\frac{-22}{6} =-3+2/3 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+17}{2*3}=\frac{12}{6} =2 $
| 20x+8-3=x+4 | | 24=4x-3+5x+6 | | 4(3x-5)=3 | | (x-6)-7=65 | | 73x-2=13 | | 2y^2-6y+4+1/2=0 | | 3(8k+2)=54 | | 17x=-13x | | 3(2k-9)=-45 | | 15(z-11)=15-165 | | 2x=7/8x+3 | | 3x/2+1=2/5 | | (2-6i)*(-4=3i) | | 8–7(4x–2)=–28x+6 | | -4k+8-2k=26 | | 10/15=z/12 | | 19+24+x=90 | | 4k+8+9k=-83 | | 4-5/291/10x)=1 | | 10+12x-3x^2=0 | | 5x+1/22=1/2 | | 8-3u=-7 | | 8^6n-6=14 | | 10k+10+8k=118 | | 3k+4+8k=81 | | 53=-4-3k | | 3n^2-29-10=0 | | 44=-1+9k | | 5x-6/3=x+4 | | 12+12m=m+3 | | 9a+139=1a+59 | | (1)/(8)y+17=2y-118 |